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1 Introduction

My research falls within the area of stable homotopy theory, especially in the computational aspect.
Stable homotopy theory is the subject that studies algebraic invariants of topological spaces that
do not change under continuous deformation, which are also known as generalized (co)homology
theories. All of the computations of these invariants can be reduced to the computation of stable
homotopy groups.

1.1 Chromatic homotopy theory

Even for the sphere, the simplest CW complex, the computation of its stable homotopy groups is
extremely difficult, and the result remains open. However, chromatic homotopy theory allows us to
decompose this computation into the computation of the homotopy groups of the K(n)-local sphere
π∗LK(n)S

0, which are vn-periodic, and therefore in principle computable in closed form.
Significant work has been done when n is 0 or 1: LK(0)S

0 is the rationalization of the sphere,
and LK(1)S

0 is related to K-theory. For n = 2, the computation has been done by Shimomura-Yabe
[SY95] at p ≥ 5 and Shimomura-Wang [SW02] at p = 3, while the computation at the prime 2 is
still open. I am currently working towards the computation at the prime 2 (c.f. §3.1). I am also
investigating properties of Gross-Hopkins duality at p ≥ 5 (c.f. §3.2).

1.2 Equivariant homotopy theory

Devinatz-Hopkins [DH04] realized LK(n)S
0 as the homotopy fixed point spectrum EhGn

n , where
En is a spectrum admitting a Gn-action. Equivariant homotopy theory is the homotopy theory
studying topological spaces with continuous group actions. It has a wide range of applications, the
most representative one among which is Hill-Hopkins-Ravenel’s solution [HHR16] to the Kervaire
invariant one problem, which involved studying the C8-equivariant spectrum ΩO.

My work [Mab] focuses on C2-equivariant homotopy theory (c.f. §2.1). In [Mab], I compared two
methods of computing C2-equivariant stable homotopy groups, and related them to the computation
of classical stable homotopy groups. I am seeking a generalization to the Cp-equivariant case, where
p is an odd prime (c.f. §3.3).

1.3 Motivic homotopy theory

S-motivic homotopy theory is the homotopy theory of smooth schemes of finite type over S.
Gheorghe-Wang-Xu [GWX21] revealed an astonishing relation between C-motivic stable homo-
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topy theory and classical stable homotopy theory, which Isaksen-Wang-Xu [IWX23] was able to
use to extend the range of the classical computation by 50%. By considering the action of the Ga-
lois group, Behrens-Shah [BS20] related R-motivic homotopy theory with C2-equivariant homotopy
theory, which is the main technique in dealing with the C2-equivariant computation in [Mab].

1.4 Synthetic spectra

One year after [GWX21], Gheorghe-Isaksen-Krause-Ricka [GIKR22] used filtered spectra to give
an alternate description of 2-completed cellular C-motivic spectra in an algebraic topological way.
This was further generalized to synthetic spectra by Pstra̧gowski in [Pst23].

Filtered spectra and synthetic spectra are powerful tools when we need to compare differentials
in different spectral sequences. In my work [Ma24b], I used them to prove a generalized geometric
boundary theorem, which transports information about Adams spectral sequences for different
spectra along the maps in a cofiber sequence (c.f. §2.2). Synthetic spectra are also used in my
current work on chromatic computations (c.f. §3.1).

1.5 Summary

I have broad research interests in all these aspects of stable homotopy theory, which interact with
each other in a beautiful way.

2 Previous projects

2.1 C2-equivariant Adams spectral sequences [Mab]

In this subsection, we will focus at the prime 2, and every object is assumed to be 2-completed.
One of the most efficient ways to compute the classical stable homotopy homotopy groups of

spheres is the Adams spectral sequence:

Ext∗,∗A∗
(F2,F2) ⇒ π∗S.

In the C2-equivariant context, two different Adams spectral sequences have been constructed.
Greenlees [Gre85, Gre88, Gre90] constructed the Borel C2-equivariant Adams spectral sequence:

Ext∗,∗,∗Ah
∗,∗

((
HF2

)h
∗,∗ ,

(
HF2

)h
∗,∗

)
⇒ πC2

∗,∗ (SC2
)
h
.

Hu-Kriz [HK01] constructed the genuine C2-equivariant Adams spectral sequence:

Ext∗,∗,∗
AC2

∗,∗

((
HF2

)
∗,∗ ,

(
HF2

)
∗,∗

)
⇒ πC2

∗,∗ SC2
.

By the Segal conjecture for C2 [Lin80], the map

SC2
→ (SC2

)
h

is a (2-adic) equivalence. Furthermore, there is a canonical map from the genuine equivariant
Adams spectral sequence to the Borel Adams spectral sequences. Therefore, it is natural to ask:

2



Question 1. Are these two spectral sequences isomorphic?

By the change-of-rings isomorphism, the map on the E2-terms is the map

Ext∗,∗,∗
AC2

∗,∗

((
HF2

)
∗,∗ ,

(
HF2

)
∗,∗

)
→ Ext∗,∗,∗

AC2
∗,∗

((
HF2

)
∗,∗ ,

(
HF2

)h
∗,∗

)
obtained by applying the Ext functor to the map(

HF2

)
∗,∗ →

(
HF2

)h
∗,∗ . (i)

Since map (i) is neither injective nor surjective, we cannot get a long exact sequence directly. An
idea is to factor this map through its image, but the problem is that the factorization does not lift
to a factorization of spectral sequences in the C2-equivariant context.

To solve this problem, I used R-motivic homotopy theory, since the homotopy group of the
R-motivic Eilenberg-MacLane spectrum M2 is isomorphic to the image of (i). Using homological
algebra, I was finally able to give a negative answer to Question 1 by showing

Theorem 2 ([Mab, Thm. 6.2]). The E2-term of the Borel Adams spectral sequence can be obtained
from the genuine one by shifting the filtration degree of the elements in the negative cone up by 1
and cancelling the “shortened” genuine d2 differentials.

By more detailed analysis, I was able to compare the differentials in these two spectral sequences:

Theorem 3 ([Mab, Thm. 6.3, 6.4]). The differentials in the Borel and genuine Adams spectral
sequences can be deduced from each other up to indeterminacy.

On the other hand, I also studied the computation of the Borel Adams spectral sequence. Using
the algebraic Lin’s theorem [LDMA80], I was able to show

Theorem 4 ([Mab, Thm. 4.1, 4.2]). The Borel Adams spectral sequence is isomorphic to the direct
sum of at most two classical Adams spectral sequences. The isomorphism of the E2-terms is given
by

Exts,t,wAh
∗,∗

((
HF2

)h
∗,∗ ,

(
HF2

)h
∗,∗

)
∼=

{
Exts−1,t−w−1

A∗

(
H∗ΣP−w−1

−∞
)
, w > 0;

Exts−1,t−w−1
A∗

(
H∗P∞

−w
)
⊕ Exts,t−w−1

A∗

(
H∗S

−1
)
, w ≤ 0.

Since the A∗-comodules appearing in the right-hand side are bounded below, the Ext groups can
be computed using the Curtis algorithm. I wrote a program [Ma24a] to process the computation,
through which I was able to produce charts of the E2-term of the Borel Adams spectral sequence
as shown in [Mab, Appx. A].

This computation should be compared with Guillou-Isaksen’s computation [GI] of the genuine
C2-equivariant Adams spectral sequence. Furthermore, a partial comparison between the naming
systems of [GI] and [Mab] was given in [Mab, Sec. 7].

2.2 Generalized geometric boundary theorem [Ma24b]

When analysing the spectral sequences in [Mab], I need to compare the Adams spectral sequences
of spectra in a cofiber sequence. This problem is known as the generalized geometric boundary
theorem, and was proved in [Beh12, Lem. A.4.1]. However, I noticed that its assumption is not
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sufficient to support the result. This motivated me to write [Ma24b] to fix the mistake and make
the proof more readable.

When comparing the differentials that occur in different pages of spectral sequences, I made use
of the power of filtered spectra. Filtered spectra translate all spectral sequences into τ -Bockstein
spectral sequences, and the structure of the homotopy groups as Z[τ ]-modules contains the informa-
tion of differentials in different pages simultaneously. Using filtered spectra, I was able to formulate
the correct assumptions for the generalized geomeric boundary theorem and write a cleaner proof
(c.f. [Ma24b, Thm. 1, 2, 3, 4, 5]).

3 Ongoing and future projects

In this section, I will discuss the subject of my thesis [Mac], which invloves a computation of the
K(2)-local homotopy of a finite complex YH at the prime 2. I will also discuss the next steps in this
project, as well as other projects I plan to pursue.

3.1 The K(2)-local homotopy groups of YH at p = 2

In [BBB+21], the K(2)-local homotopy groups of Z at the prime 2 have been computed up to a
possible extension, where Z is a 2-local finite spectrum of type 2 with 32 cells. On the other hand,
the K(2)-local homotopy groups of the sphere at the prime 2 are still too complicated to compute.
It is a natural idea to study an intermediate object to connect the computation of S0 and Z.

The object I am considering is YH ≃ Σ−7RP2 ∧CP2 ∧HP2, an 8-cell spectrum of type 1. It has
two advantages over Pham’s choice A1 in his thesis [Pha19]: YH has no ambiguity, while there are
four versions of A1; the computation of YH includes v1-local information as it is of type 1, while A1

does not as it is of type 2.
Note that we have G2

∼= G1
2 ⋊ Z2 and G1

2
∼= S12 ⋊ C2. To compute the homotopy groups of

LK(2)YH ≃ EhG2
2 ∧ YH, one first needs to compute the homotopy groups of E

hS12
2 ∧ YH. The tool I

use is the topological duality spectral sequence (TDSS) induced by the finite resolution

E
hS12
2 ∧ YH → EhG24

2 ∧ YH → EhC6
2 ∧ YH → Σ48EhC6

2 ∧ YH → Σ48EhG24
2 ∧ YH

constructed by Bobkova-Goerss [BG18]. Converging to the homotopy groups of each term, there are
the Adams-Novikov spectral sequences (ANSS) whose E2-terms form the algebraic duality spectral
sequence (ADSS) converging to H∗(S12; (E2)∗YH), which is constructed by Beaudry [Bea16].

I have completely computed the ADSS for YH.

Theorem 5 ([Mac]). The differentials in E1-page of the ADSS for YH are completely computed.
The ADSS for YH collapses at the E2-page.

Furthermore, using the MU -synthetic method, I am able to combine the ADSS and the ANSS
together, and get the following result on the TDSS for YH.

Theorem 6 ([Mac]). The differentials in E1-page of the TDSS for YH are completely computed.
There are no nontrivial differentials in the E2-page.

I am optimistic of the following conjecture.
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Conjecture 7. There are no nontrivial differentials in the E3-page of the TDSS for YH, and hence
the TDSS collapses at the E2-page.

To prove this conjecture, I plan to compute the tmf -Hurewicz image of YH by the tmf -resolution.
If the conjecture holds, the TDSS for YH would be completely computed, which gives us the homo-

topy groups of E
hS12
2 ∧YH. After that, I will endeavor to compute the homotopy groups of LK(2)YH,

and will apply this computation to study the computation of the K(2)-local homotopy groups of
spheres at p = 2.

3.2 Homotopy groups of E
hG1

2
2 at p ≥ 5

Although we have known the homotopy groups of LK(2)S
0 as abelian groups at p ≥ 5, we do not

understand the ring structure very well. In particular, there is an element ζ ∈ π−1LK(2)S
0 with

ζ2 = 0. We do not know the ΛFp [ζ]-module structure on π∗LK(2)S
0. Note that the semidirect

product decomposition G2
∼= G1

2 ⋊ Zp induces the cofiber sequence

LK(2)S
0 → E

hG1
2

2

ψ−1−−−→ E
hG1

2
2 ,

and ζ is the composite S−1 → Σ−1E
hG1

2
2 → LK(2)S

0. Therefore, it is important to understand the

homotopy groups of E
hG1

2
2 . Such results might also be important for the computation at p = 2.

While the computation is tough, we can reduce the amount of computation by considering the
Gross-Hopkins dual I2X ≃ D2X ∧ Σ2S[det] ([HG94]), where X ∈ SpK(2) and S[det] is an element
in Pic(SpK(2)). It is hard to apply directly though, since we do not know the homotopy groups of

S[det]. However, I have proved that E
hG1

2
2 is Gross-Hopkins self dual up to a p-adic suspension:

Theorem 8 ([Maa, Cor. 4]). There is an equivalence

I2E
hG1

2
2 ≃ Σ(1+p+p2+··· )|v2|+2p+3E

hG1
2

2 .

I am seeking the application of this self-duality result to the computations.

3.3 Cp-equivariant Adams spectral sequences for odd primes

There is a fair amount of computations of the C2-equivariant homotopy groups of spheres using the
genuine equivariant Adams spectral sequence (c.f. [GI]). On the other hand, the Cp-equivariant
dual Steenrod algebra for odd primes was computed by Hu-Kriz-Somberg-Zou [HKSZ]. However,
the result is complicated and its cohomology, which is the E2-term of the genuine equivariant Adams
spectral sequence, is hard to compute.

In [Mab], I have shown that the genuine C2-equivariant Adams spectral sequence is related to the
Borel Adams spectral sequence, which, by Theorem 4, is isomorphic to the classical Adams spectral
sequences of the stunted real projective spectra (c.f. §2.1). I am interested in its generalization to
the Cp-equivariant case for odd primes, so that it would be possible to understand the genuine Cp-
equivariant Adams spectral sequence through the classical Adams spectral sequences of the stunted
lens spaces.
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