SELF-DUALITY OF $E_2^{h\mathbb{G}_2^1}$ at $p\geq 5$

SIHAO MA

ABSTRACT. In this note, we will show that the Gross-Hopkins dual of $E_2^{h\mathbb{G}_2^1}$ is a *p*-adic suspension of itself at $p \geq 5$.

Recall that we have the determinant map

det : $\mathbb{G}_2 \to \mathbb{Z}_p^{\times}$.

Composing it with the quotient map $\mathbb{Z}_p^{\times}/\mathbb{F}_p^{\times} \cong \mathbb{Z}_p$ gives a homomorphism

$$
\zeta_2:\mathbb{G}_2\to \mathbb{Z}_p.
$$

Denote by \mathbb{G}_2^1 the kernel of ζ_2 and let $\overline{S} = E_2^{h\mathbb{G}_2^1}$.

For a Morava module $M \in Mod_{(E_2)_*}^{\mathbb{G}_2}$, let $M[\det^k] \in Mod_{(E_2)_*}^{\mathbb{G}_2}$ be the Morava module twisted by $\det^k : \mathbb{G}_2 \to \mathbb{Z}_p^{\times} \subset (E_2)_{0}^{\times}$. To be explicit, the twisted \mathbb{G}_2 action on $M[\det^k]$ is given by

$$
g_{\det^k} m = \det(g)^k g m.
$$

Recall from the unpublished result of Hopkins that

$$
Pic(Sp_{K(2)}) \cong \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}/2(p^2 - 1)
$$

is topologically generated by $L_{K(2)}S^1$ and $S[\text{det}]$. The isomorphism can be chosen such that $L_{K(2)}S^1$ and $S[\text{det}]$ correspond to $(1,0,1)$ and $(0,1,2(p+1))$ respectively. The determinant sphere S[det] satisfies that $(E_2)_*^{\vee}S[\text{det}] \cong (E_2)_*[\text{det}]$ as Morava modules.

Lemma 1. There is an isomorphism of Morava modules

 $(E_2)_{*}^{\vee} \overline{S} \cong (E_2)_{*}^{\vee} \overline{S} [\text{det}^{p-1}].$

Proof. By [\[DH04,](#page-2-0) Thm. 2],

$$
(E_2)^\vee_*\overline{S} \cong \mathrm{Map}^c\left(\mathbb{G}_2/\mathbb{G}_2^1, (E_2)_*\right) \cong \mathrm{Map}^c\left(\mathbb{Z}_p, (E_2)_*\right),
$$

where the \mathbb{G}_2 -action is given by

$$
(g\phi)(x) = g\phi(g^{-1}x) = g\phi(x - \zeta_2(g)).
$$

Note that there is a split short exact sequence

$$
0 \longrightarrow \mathbb{F}_p^{\times} \xrightarrow{\text{mod } p} \mathbb{Z}_p^{\times} \xrightarrow{\text{mod } p} \mathbb{Z}_p \longrightarrow 0.
$$

We then claim that for any $g \in \mathbb{G}_2$,

$$
\det(g)^{p-1} = \left(e^{p\zeta_2(g)}\right)^{p-1} \in \mathbb{Z}_p^\times.
$$

This is because $\det(g)$ and $e^{p\zeta_2(g)}$ have the same image $\zeta_2(g)$ in \mathbb{Z}_p . After taking $(p-1)^{st}$ power, both of them are congruent to 1 mod p.

Now we construct the following map

$$
F: \text{Map}^{c}(\mathbb{Z}_p, (E_2)_*) \to \text{Map}^{c}(\mathbb{Z}_p, (E_2)_*) [\det^{p-1}];
$$

$$
\phi \mapsto \left(F(\phi) : x \mapsto e^{(p^2 - p)x} \phi(x) \right).
$$

Note that

$$
F(g\phi)(x) = e^{(p^2 - p)x}(g\phi)(x) = e^{(p^2 - p)x}g\phi(x - \zeta_2(g)),
$$

and that

$$
(g_{\det^{p-1}}F)(\phi)(x) = \det(g)^{p-1}gF(\phi)(x - \zeta_2(g))
$$

= $e^{(p^2 - p)\zeta_2(g)}g(e^{(p^2 - p)(x - \zeta_2(g))}\phi(x - \zeta_2(g)))$
= $e^{(p^2 - p)\zeta_2(g)}e^{(p^2 - p)(x - \zeta_2(g))}g\phi(x - \zeta_2(g))$
= $e^{(p^2 - p)x}g\phi(x - \zeta_2(g)),$

we can see that F is a map of Morava modules. Similarly, we construct the map

$$
G: \text{Map}^{c}(\mathbb{Z}_p, (E_2)_{*})\left[\det^{p-1}\right] \to \text{Map}^{c}(\mathbb{Z}_p, (E_2)_{*})\, ;
$$

$$
\psi \mapsto \left(G(\psi): x \mapsto e^{(p-p^2)x}\psi(x)\right).
$$

Note that

$$
G(g_{\det^{p-1}}\psi)(x) = e^{(p-p^2)x} \det(g)^{p-1} g\psi(x - \zeta_2(g))
$$

= $e^{(p-p^2)(x-\zeta_2(g))} g\psi(x - \zeta_2(g))$
= $g\left(e^{(p-p^2)(x-\zeta_2(g))}\psi(x - \zeta_2(g))\right)$
= $(gG)(\psi)(x),$

we can see that G is also a map of Morava modules. It is easy to see that F and G are inverses of each other, and the result follows. \Box

Lemma 2. The functor $(E_2)_*^{\vee}(-)$ induces an isomorphism

$$
\pi_0 \operatorname{Map}(\overline{S}, \overline{S}[\operatorname{det}^{p-1}]) \to \operatorname{Hom}_{\operatorname{Mod}_{(E_2)_*}^{\mathbb{G}_2}}((E_2)_*^{\vee} \overline{S}, (E_2)_*^{\vee} \overline{S}[\operatorname{det}^{p-1}]).
$$

Proof. By [\[Hov04,](#page-2-1) Thm. 2.6], $(E_2)_*^{\vee} \overline{S} \cong \text{Map}^c(\mathbb{Z}_p, (E_2)_*)$ is pro-free. By [\[BH16,](#page-2-2) Thm. 3.1], there is a $K(2)$ -local E_2 -Adams spectral sequence

$$
E_2^{s,t} = \widehat{\operatorname{Ext}}_{(E_2)\underset{*}{\vee}E_2}^{s,t} \left((E_2)_{*}^{\vee} E_2^{h\mathbb{G}_2^1}, (E_2)_{*}^{\vee} E_2^{h\mathbb{G}_2^1} \right) \Rightarrow \pi_{t-s} \operatorname{Map} \left(\overline{S}, \overline{S} [\operatorname{det}^{p-1}] \right). \tag{1}
$$

By [\[BH16,](#page-2-2) Cor. 3.2], there is an isomorphism

$$
\widehat{\operatorname{Ext}}_{(E_2)\underset{\nu}{\vee}E_2}^{s,t}\left((E_2)_{*}^{\vee}E_2^{h\mathbb{G}_2^1}, (E_2)_{*}^{\vee}E_2^{h\mathbb{G}_2^1}\right)\cong H_c^s\left(\mathbb{G}_2^1, \pi_t\operatorname{Map}(\overline{S}, E_2)\right).
$$

By [\[GHMR05,](#page-2-3) Prop. 2.5], there is an isomorphism

 $\pi_* \text{Map}(\overline{S}, E_2) = (E_2)_*[[\mathbb{Z}_p]].$

Then the E_2 -term of the spectral sequence [\(1\)](#page-1-0) becomes

$$
E_2^{s,t} = H_c^s \left(\mathbb{G}_2^1; (E_2)_t[[\mathbb{Z}_p]] \right).
$$

By [\[Hen07,](#page-2-4) Thm. 6], $\text{cd}_p(\mathbb{G}_2^1) \leq 3$, and thus, $E_2^{s,t} = 0$ for $s > 3$. On the other hand, for any $a \in \mathbb{F}_p^{\times} \subset \mathbb{Z}_p^{\times} \subset \mathbb{G}_2$, we have $\det(a) = a^2$, and hence $\zeta_2(a) = 0$. Therefore, \mathbb{F}_p^{\times} is a subgroup of \mathbb{G}_2^1 . Furthermore, it is the torsion subgroup of \mathbb{Z}_p^{\times} , the center of \mathbb{G}_2 . This implies that \mathbb{F}_p^{\times} is a normal subgroup of \mathbb{G}_2 , so it is also a normal subgroup of \mathbb{G}_2^1 . Then we have the Hochschild-Serre spectral sequence

$$
H_c^* \left(\mathbb{G}_2^1 / \mathbb{F}_p^{\times}; H^*(\mathbb{F}_p^{\times}; (E_2)_*[[\mathbb{Z}_p]]) \right) \Rightarrow H_c^* \left(\mathbb{G}_2^1; (E_2)_*[[\mathbb{Z}_p]] \right).
$$

Note that $p-1$, the order of \mathbb{F}_p^{\times} , is invertible in $(E_2)_*[[\mathbb{Z}_p]]$, the cohomology $H^*(\mathbb{F}_p^\times; (E_2)_*[[\mathbb{Z}_p]]) \cong (E_2)_*[[\mathbb{Z}_p]]^{\mathbb{F}_p^\times}$ is concentrated at cohomological degree 0. Thus, the Hochschild-Serre spectral sequence collapses, and we have

$$
H_c^s\left(\mathbb{G}_2^1;(E_2)_t[[\mathbb{Z}_p]]\right)\cong H_c^s\left(\mathbb{G}_2^1/\mathbb{F}_p^{\times};(E_2)_t[[\mathbb{Z}_p]]^{\mathbb{F}_p^{\times}}\right).
$$

Here \mathbb{F}_p^{\times} acts on $\mathbb{Z}_p \cong \mathbb{G}_2/\mathbb{G}_2^1$ trivially. For $a \in \mathbb{F}_p^{\times}$, its action on $(E_2)_{2t}$ is the multiplication by a^t . Therefore, $H_c^s(\mathbb{G}_2^1; (E_2)_t[[\mathbb{Z}_p]])$ is only possibly nontrivial if t is a multiple of $2(p-1)$. The sparseness then implies that

$$
\pi_0 \operatorname{Map} (\overline{S}, \overline{S}[\det^{p-1}]) \cong \operatorname{Ext}^{0,0}_{(E_2)\check{}_*E_2} ((E_2)_{*}^{\vee} E_2^{h\mathbb{G}_2^1}, (E_2)_{*}^{\vee} E_2^{h\mathbb{G}_2^1})
$$

\n
$$
\cong \operatorname{Hom}_{\operatorname{Comod}_{(E_2)\check{}_*E_2}} ((E_2)_{*}^{\vee} E_2^{h\mathbb{G}_2^1}, (E_2)_{*}^{\vee} E_2^{h\mathbb{G}_2^1})
$$

\n
$$
\cong \operatorname{Hom}_{\operatorname{Mod}_{(E_2)_*}} ((E_2)_{*}^{\vee} E_2^{h\mathbb{G}_2^1}, (E_2)_{*}^{\vee} E_2^{h\mathbb{G}_2^1}),
$$

where the last isomorphism is due to [\[BH16,](#page-2-2) Cor. 5.5]. Then the result follows. \Box

Theorem 3. There is an equivalence

$$
\overline{S}\left[\det^{p-1}\right] \simeq \overline{S}.
$$

Proof. By Lemma [2,](#page-1-1) there is a map $\overline{S} \to \overline{S}$ [det^{p-1}] realizing the isomorphism in Lemma [1.](#page-0-0) Then it induces an equivalence

$$
L_{K(2)}\left(E_2 \wedge \overline{S}\right) \xrightarrow{\simeq} L_{K(2)}\left(E_2 \wedge \overline{S}[\det^{p-1}]\right).
$$

By [\[HS99,](#page-2-5) Thm. 8.9], this map itself is an equivalence. \Box

Corollary 4. There is an equivalence

Proof.
\n
$$
I_2\overline{S} \simeq \Sigma^{(1+p+p^2+\cdots)|v_2|+2p+3}\overline{S}.
$$
\n
$$
I_2\overline{S} \simeq D_2\overline{S} \wedge I_2
$$
\n
$$
\simeq \Sigma^{-1}\overline{S} \wedge I_2
$$
\n
$$
\simeq \Sigma^{-1}\overline{S} \wedge S^2[\text{det}]
$$
\n
$$
\simeq \Sigma^{(1+p+p^2+\cdots)|v_2|+2p+3}\overline{S}.
$$

REFERENCES

- [BH16] Tobias Barthel and Drew Heard. The E_2 -term of the $K(n)$ -local E_n -Adams spectral sequence. Topology and its Applications, 206:190-214, 2016.
- [DH04] Ethan Sander Devinatz and Michael Jerome Hopkins. Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups. Topology, 43(1):1–47, 2004.
- [GHMR05] Paul Goerss, Hans-Werner Henn, Mark Mahowald, and Charles Rezk. A resolution of the $K(2)$ -local sphere at the prime 3. Annals of Mathematics, pages 777–822, 2005.
- [Hen07] Hans-Werner Henn. On finite resolutions of $K(n)$ -local spheres. *Elliptic cohomology:* geometry, applications, and higher chromatic analogues, pages 122–169, 2007.
- [Hov04] Mark Hovey. Operations and co-operations in Morava E-theory. Homology, Homotopy and Applications, 6(1):201–236, 2004.
- [HS99] Mark Hovey and Neil Patrick Strickland. Morava K-theories and localisation, volume 666. American Mathematical Soc., 1999.