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Abstract. In this note, we will show that the Gross-Hopkins dual of E
hG1

2
2 is

a p-adic suspension of itself at p ≥ 5.

Recall that we have the determinant map

det : G2 → Z×
p .

Composing it with the quotient map Z×
p /F×

p
∼= Zp gives a homomorphism

ζ2 : G2 → Zp.

Denote by G1
2 the kernel of ζ2 and let S = E

hG1
2

2 .

For a Morava module M ∈ ModG2

(E2)∗
, let M [detk] ∈ ModG2

(E2)∗
be the Morava

module twisted by detk : G2 → Z×
p ⊂ (E2)

×
0 . To be explicit, the twisted G2 action

on M [detk] is given by

gdetkm = det(g)kgm.

Recall from the unpublished result of Hopkins that

Pic(SpK(2)) ∼= Zp × Zp × Z/2(p2 − 1)

is topologically generated by LK(2)S
1 and S[det]. The isomorphism can be chosen

such that LK(2)S
1 and S[det] correspond to (1, 0, 1) and (0, 1, 2(p+1)) respectively.

The determinant sphere S[det] satisfies that (E2)
∨
∗S[det]

∼= (E2)∗[det] as Morava
modules.

Lemma 1. There is an isomorphism of Morava modules

(E2)
∨
∗S

∼= (E2)
∨
∗S

[
detp−1

]
.

Proof. By [DH04, Thm. 2],

(E2)
∨
∗S

∼= Mapc
(
G2/G1

2, (E2)∗
) ∼= Mapc (Zp, (E2)∗) ,

where the G2-action is given by

(gϕ)(x) = gϕ(g−1x) = gϕ(x− ζ2(g)).

Note that there is a split short exact sequence

0 // F×
p

// Z×
p

mod p

jj // Zp

epx
jj // 0 .

We then claim that for any g ∈ G2,

det(g)p−1 =
(
epζ2(g)

)p−1

∈ Z×
p .

This is because det(g) and epζ2(g) have the same image ζ2(g) in Zp. After taking
(p− 1)st power, both of them are congruent to 1 mod p.
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Now we construct the following map

F : Mapc (Zp, (E2)∗) → Mapc (Zp, (E2)∗) [det
p−1];

ϕ 7→
(
F (ϕ) : x 7→ e(p

2−p)xϕ(x)
)
.

Note that
F (gϕ)(x) = e(p

2−p)x(gϕ)(x) = e(p
2−p)xgϕ(x− ζ2(g)),

and that

(gdetp−1F ) (ϕ)(x) = det(g)p−1gF (ϕ)(x− ζ2(g))

= e(p
2−p)ζ2(g)g

(
e(p

2−p)(x−ζ2(g))ϕ(x− ζ2(g))
)

= e(p
2−p)ζ2(g)e(p

2−p)(x−ζ2(g))gϕ(x− ζ2(g))

= e(p
2−p)xgϕ(x− ζ2(g)),

we can see that F is a map of Morava modules. Similarly, we construct the map

G : Mapc (Zp, (E2)∗) [det
p−1] → Mapc (Zp, (E2)∗) ;

ψ 7→
(
G(ψ) : x 7→ e(p−p2)xψ(x)

)
.

Note that

G(gdetp−1ψ)(x) = e(p−p2)x det(g)p−1gψ(x− ζ2(g))

= e(p−p2)(x−ζ2(g))gψ(x− ζ2(g))

= g
(
e(p−p2)(x−ζ2(g))ψ(x− ζ2(g))

)
= (gG)(ψ)(x),

we can see that G is also a map of Morava modules. It is easy to see that F and G
are inverses of each other, and the result follows. □

Lemma 2. The functor (E2)
∨
∗ (−) induces an isomorphism

π0 Map
(
S, S[detp−1]

)
→ Hom

Mod
G2
(E2)∗

(
(E2)

∨
∗S, (E2)

∨
∗S

[
detp−1

])
.

Proof. By [Hov04, Thm. 2.6], (E2)
∨
∗S

∼= Mapc (Zp, (E2)∗) is pro-free. By [BH16,
Thm. 3.1], there is a K(2)-local E2-Adams spectral sequence

Es,t
2 = Êxt

s,t

(E2)∨∗ E2

(
(E2)

∨
∗E

hG1
2

2 , (E2)
∨
∗E

hG1
2

2

)
⇒ πt−s Map

(
S, S[detp−1]

)
. (1)

By [BH16, Cor. 3.2], there is an isomorphism

Êxt
s,t

(E2)∨∗ E2

(
(E2)

∨
∗E

hG1
2

2 , (E2)
∨
∗E

hG1
2

2

)
∼= Hs

c

(
G1

2, πt Map(S,E2)
)
.

By [GHMR05, Prop. 2.5], there is an isomorphism

π∗ Map(S,E2) = (E2)∗[[Zp]].

Then the E2-term of the spectral sequence (1) becomes

Es,t
2 = Hs

c

(
G1

2; (E2)t[[Zp]]
)
.

By [Hen07, Thm. 6], cdp(G1
2) ≤ 3, and thus, Es,t

2 = 0 for s > 3. On the other
hand, for any a ∈ F×

p ⊂ Z×
p ⊂ G2, we have det(a) = a2, and hence ζ2(a) = 0.

Therefore, F×
p is a subgroup of G1

2. Furthermore, it is the torsion subgroup of Z×
p ,
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the center of G2. This implies that F×
p is a normal subgroup of G2, so it is also a

normal subgroup of G1
2. Then we have the Hochschild-Serre spectral sequence

H∗
c

(
G1

2/F×
p ;H

∗(F×
p ; (E2)∗[[Zp]])

)
⇒ H∗

c

(
G1

2; (E2)∗[[Zp]]
)
.

Note that p − 1, the order of F×
p , is invertible in (E2)∗[[Zp]], the cohomology

H∗(F×
p ; (E2)∗[[Zp]]) ∼= (E2)∗[[Zp]]

F×
p is concentrated at cohomological degree 0.

Thus, the Hochschild-Serre spectral sequence collapses, and we have

Hs
c

(
G1

2; (E2)t[[Zp]]
) ∼= Hs

c

(
G1

2/F×
p ; (E2)t[[Zp]]

F×
p

)
.

Here F×
p acts on Zp

∼= G2/G1
2 trivially. For a ∈ F×

p , its action on (E2)2t is the

multiplication by at. Therefore, Hs
c

(
G1

2; (E2)t[[Zp]]
)
is only possibly nontrivial if t

is a multiple of 2(p− 1). The sparseness then implies that

π0 Map
(
S, S[detp−1]

) ∼= Êxt
0,0

(E2)∨∗ E2

(
(E2)

∨
∗E

hG1
2

2 , (E2)
∨
∗E

hG1
2

2

)
∼= Hom

Ĉomod(E2)∨∗ E2

(
(E2)

∨
∗E

hG1
2

2 , (E2)
∨
∗E

hG1
2

2

)
∼= Hom

Mod
G2
(E2)∗

(
(E2)

∨
∗E

hG1
2

2 , (E2)
∨
∗E

hG1
2

2

)
,

where the last isomorphism is due to [BH16, Cor. 5.5]. Then the result follows. □

Theorem 3. There is an equivalence

S
[
detp−1

]
≃ S.

Proof. By Lemma 2, there is a map S → S[detp−1] realizing the isomorphism in
Lemma 1. Then it induces an equivalence

LK(2)

(
E2 ∧ S

) ≃−→ LK(2)

(
E2 ∧ S[detp−1]

)
.

By [HS99, Thm. 8.9], this map itself is an equivalence. □

Corollary 4. There is an equivalence

I2S ≃ Σ(1+p+p2+··· )|v2|+2p+3S.

Proof. I2S ≃ D2S ∧ I2
≃ Σ−1S ∧ I2
≃ Σ−1S ∧ S2[det]

≃ Σ(1+p+p2+··· )|v2|+2p+3S. □
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